
EE278 Statistical Signal Processing Stanford, Autumn 2023

Homework 2

Due: Thursday, October 12, 2023, 1:00 pm on Gradescope

Please upload your answers timely to Gradescope. Start a new page for every problem. For
the programming/simulation questions you can use any reasonable programming language.
Comment your source code and include the code and a brief overall explanation with your
answers.

1. Repeat part (a) and (b) of Problem 4 from HW 1 by using Hoeffding’s inequality to get
a reasonable bound on the sequence length n.

2. Sub-Gaussian random variables
Let X1, X2, . . . , Xn be independent (but not necessarily identically distributed) and sub-
Gaussian with variance proxies σ2

1, . . . , σ
2
n respectively. Show that X̄n = 1

n

∑n
i=1 aiXi is

sub-Gaussian and provide an expression for its variance proxy.

3. McDiarmid’s Inequality

Let A be a n× n matrix with each entry chosen to be 0 or 1 with probability 1/2 inde-
pendently of the other entries. Let f : Rn×n → R be the function f(A) = trace(ATA).

a) What is E[f(A)]?

b) Using McDiarmid’s inequality provide a bound on Pr {f(A) ≥ (1 + ϵ)E[f(A)]} for
ϵ > 0.

4. Estimating mean and variance of a Gaussian distriibution
Let X1, X2, . . . , Xn be i.i.d. Gaussian observations with mean µ and variance σ2.

(a) Suppose the variance σ2 is known and we want to estimate the mean of the distri-
bution by taking the average of the samples, i.e. our estimate for the mean is given
by

X̂mean =
1

n

n∑
i=1

Xi

Show that E[X̂mean] = µ. An estimator that satisfies this property is called an
unbiased estimator of the unknown parameter.

(b) Provide an (exponentially decaying) upper bound on the probability that the esti-
mate X̂mean deviates from the true mean by some given t > 0, i.e.

Pr
{
|X̂mean − µ| ≥ t

}
.
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(c) Suppose now that the mean µ is known and we want to estimate the variance of
the distribution by using X̂variance =

1
n

∑n
i=1(Xi − µ)2 as our estimate. Show that

E[X̂variance] = σ2, i.e. X̂variance is an unbiased estimator of the variance.

(d) Provide an upper bound on the probability that the estimate X̂variance deviates
from the true variance by some given t > 0, i.e.

Pr
{
|X̂variance − σ2| ≥ t

}
for some given t > 0, by using Chebyshev’s inequality. Hint: you can use the fact
that E[W 4] = 3 for W ∼ N(0, 1).

(e) Let Z = (X1 − µ)2. Compute the moment generating function of Z.

(f) Is Z sub-Gaussian? Hint: Recall that the moment generating function of an q
-sub-Gaussian r.v. Y with mean µ has to satisfy MY−µ(s) ≤ es

2q2/2 for all s ∈ R.
(g) Derive an exponentially decaying upper bound on

Pr
{
|X̂variance − σ2| ≥ t

}
,

by using the method in the derivation of the Hoeffding’s inequality.

(h) Compare the decay rate as a function of t to the decay rate in part (b). Which one
is easier to estimate: the mean or the variance?

5. Chernoff bound

The Chernoff bound is a concentration inequality specifically for Bernoulli random vari-
ables. In this exercise, you will first prove it and then investigate whether or not it is
more powerful than the Hoeffding’s inequality applied to Bernoulli random variables.
The exact statment of the Chernoff bound is as follows: let X1, X2, . . . , Xn be indepen-
dent Bernoulli random variables with mean p. Let X̄n = 1

n

∑n
i=1Xi, then

Pr
{
X̄n − p ≥ t

}
≤ etn

(
p

p+ t

)(t+p)n

.

a) Prove the above bound by following the steps in the proof of Hoeffding’s inequality
and use the fact that for Bernoulli random variables MXi(s) = 1 + p(es − 1) ≤
ep(e

s−1).

b) If p = 1/n and t = logn
n , how does this probability decay as a function of n? Linear/

quadratic/ polynomial/ faster than polynomial/exponential?

c) Now assume we apply Hoeffding’s inequality to bound Pr
{
X̄n − p ≥ t

}
instead of

the Chernoff bound above. When p = 1/n and t = logn
n and n → ∞, how does the

bound from Hoeffding’s inequality compare to the one from the previous part?
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